
Lec2-Bellman Equation
Why return is important?

Based on policy 1 (left figure) , starting from s1 , the discounted

return is

return1 = 0 + γ1 + γ 21+. . . = γ (1 + γ + γ 2+. . .) =
γ

1 − γ

Based on policy 2 (middle figure) , starting from s1 , the

discounted return is

return2 = −1 + γ1 + γ 21+. . . = −1 + γ (1 + γ + γ 2+. . .) = −1 +
γ

1 − γ

Policy 3 is stochastic . Based on policy 3 (right figure) , starting

from s1 , the discounted return is

return3 = 0.5(−1 +
γ

1 − γ
) + 0.5( γ

1 − γ
) = −0.5 +

γ

1 − γ

What is return ? The (discounted) sum of the rewards obtained
along a trajectory.

Why return is important ?

Question : From the start point s1 , which policy is the "best" ?

Which is the "worst" ?
Intuition : the first is the best and the second is the worst ,
because of the forbidden area .

Question: can we use mathematics to describe such an intuition?
Answer: Return could be used to evaluate policies. See the
following.



In summary, starting from s1​,

return1 > return3 > return2

The above inequality suggests that the first policy is the best and

the second policy is the worst, which is exactly the same as our
intuition.
Calculating return is important to evaluate a policy.

While return is important , how to calculate it?

Method 1: by definition
Let vi denote the return obtained starting from si(i = 1, 2, 3, 4)

Method 2:

How to solve these equations ？ Write in the following matrix-vector
form:

v1 = r1 + γr2 + γ 2r3+. . .

v2 = r2 + γr3 + γ 2r4+. . .

v3 = r3 + γr4 + γ 2r1+. . .

v4 = r4 + γr1 + γ 2r2+. . .

v1 = r1 + γr2 + γ 2r3+. . . = r1 + γv2

v2 = r2 + γr3 + γ 2r4+. . . = r2 + γv3

v3 = r3 + γr4 + γ 2r1+. . . = r3 + γv4

v4 = r4 + γr1 + γ 2r2+. . . = r4 + γv1

The returns rely on each other . Bootstrapping!



v
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which can be rewritten as:

v = r + γPv

This is the Bellman equation (for this specific deterministic

problem)!!

State value
Consider the following single-step process:
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Though simple, it demonstrates the core idea: the value of one
state relies on the values of other states.

A matrix-vector form is more clear to see how to solve the state
values.

t, t + 1：discrete time instance

St：state at time t

At：the action taken at state St

Rt+1：the reward obtained after taking At （这里写成Rt也行，数学上本质

相同）

St+1：the state transited to after taking At

Note that St，At，Rt+1 are all random variables （这意味着能求期望）

This step is governed by the following probability distributions:

St → At is governed by π(At = a ∣ St = s)

St, At → Rt+1​ is governed by p(Rt+1 = r ∣ St = s, At = a)

St, At → St+1 is governed by p(St+1 = s′ ∣ St = s, At = a)

At this moment, we assume we know the model (i.e., the
probability distributions)!



Consider the following multi-step trajectory:

The discounted return is

Gt = Rt+1 + γRt+2 + γ 2Rt+3 + ⋯

State value
The expectation (or called expected value or mean) of Gt is defined

as the state-value function or simply state value:

vπ (s) = E [Gt|St = s]

Remarks:

γ ∈ [0, 1) is a discount rate

Gt is also a random variable since Rt+1, Rt+2, . . . are random

variables.

It is a function of s. It is a conditional expectation with the

condition that the state starts from s.

It is based on the policy π. For a different policy , the state

value may be different.

It represents the "value" of a state. If the state value is
greater , then the policy is better because greater cumulative
rewards can be obtained.
Q : What is the relationship between return and state value?
A : The state value is the mean of all possible returns that can
be obtained starting from a state . If everything -
π(a|s), p(r|s, a), p(s′|s, a) - is deterministic , then state value is the



Bellman equation —— Derivation
In a word , the Bellman equation describes the relationship among
the values of all states.

Consider a random trajectory:

The return Gt can be written as

Gt = Rt+1 + γRt+2 + γ 2Rt+3 + ⋯ = Rt+1 + γ (Rt+2 + γRt+3 + ⋯) = Rt+1 + Gt+1

Then , it follows from the definition of the state value that

vπ (s) = E [Gt|St = s] = E [Rt+1 + γGt+1|St = s] = E [Rt+1|St = s] + γE [Gt+1|St = s]

Next , calculate the two terms , respectively.

First , calculate the first term E [Rt+1|St = s] ：

same as return.



E [Rt+1|St = s] = ∑
a

π (a|s)E [Rt+1|St = s, At = a] = ∑
a

π (a|s)∑
r

p (r|s, a)r

Note that

Second , calculate the second term E [Gt+1|St = s]:

E [Gt+1|St = s] = ∑
s′

E [Gt+1|St = s, St+1 = s′]p (s′|s) = ∑
s′

E [Gt+1|St+1 = s′]p (s′|s) =

Note that

Therefore , we have

Highlights:

This is the mean of immediate rewards

This is the mean of future rewards

∑
s′

E [Gt+1|St = s, St+1 = s′] = ∑
s′

E [Gt+1|St+1 = s′]

due to the memoryless Markov property.

The above equation is called the Bellman equation , which
characterizes the relationship among the state-value functions of
different states.

It consists of two terms : the immediate reward term and the
future reward term.

A set of equations : every state has an equation like this!



Highlights: symbols in this equation

Write out the Bellman equation according to the general expression:

vπ (s) = ∑
a

π (a|s) [∑
r

p (r|s, a)r + γ∑
s′

p (s′|s, a)vπ (s′)]

The example is simple because the policy is deterministic.

First , consider the state value of s1:

vπ(s) and vπ(s′) are state values to be calculated. Bootstrapping

π(a|s) is a given policy. Solving the equation is called policy

evaluation.

p(r|s, a) and p(s′|s, a) represent the dynamic model. What if the model

is known or unknown?

π(a = a3|s1) = 1 and π(a ≠ a3|s1) = 0

p (s′ = s3|s1, a3) = 1 and p (s′ ≠ s3|s1, a3) = 0

p (r = 0|s1, a3) = 1 and p (r ≠ 0|s1, a3) = 0

Substituting them into the Bellman equation gives

vπ (s1) = 0 + γvπ (s3)

Similarly , it can be obtained that

vπ (s1) = 0 + γvπ (s3)

vπ (s2) = 1 + γvπ (s4)

vπ (s3) = 1 + γvπ (s4)

vπ (s4) = 1 + γvπ (s4)



【Exercise】:

How to solve them?

if γ = 0.9 , then

（state value大表示这个状态值得我们去走）

What to do after we have calculated state values?
(calculating action value and improve policy)

vπ (s4) = 1
1−γ

vπ (s3) = 1
1−γ

vπ (s2) = 1
1−γ

vπ (s1) =
γ

1−γ

vπ (s4) = 1
1−0.9 = 10

vπ (s3) = 1
1−0.9 = 10

vπ (s2) = 1
1−0.9 = 10

vπ (s1) = 0.9
1−0.9 = 9

write out the Bellman equations for each state

solve the state values from the Bellman equations



Bellman equation —— Matrix-vector form

compare with the policy in the last example

How to solve the Bellman equation ?
One unknown relies on another unknown.

vπ (s) = ∑
a

π (a|s) [∑
r

p (r|s, a)r + γ∑
s′

p (s′|s, a)vπ (s′)]

The above elementwise form is valid for every state s ∈ S. That

means there are ∣ S ∣ equations like this!

If we put all the equations together, we have a set of linear
equations, which can be concisely written in a matrix-vector
form.



The matrix-vector form is very elegant and important.



Bellman equation —— Solve the state values



Why to solve state values?

Given a policy, finding out the corresponding state values is
called policy evaluation! It is a fundamental problem in RL. It
is the foundation to find better policies.

It is important to understand how to solve the Bellman equation.





Action value
From state value to action value

State value : the average return the agent can get starting from
a state

Action value : the average return the agent can get starting from
a state and taking an action
Why do we care action value? Because we want to know which action
is better. This point will be clearer in the following lectures.
We will frequently use action values.





Summary

虽然这个策略告诉我们选择a2，但是所有的action都是可以计算的

Highlights:

Action value is important since we care about which action to
take.

We can first calculate all the state values and then calculate
the action values.

We can also directly calculate the action values with or without
models.




