实验四： 触发器（选做）
预备知识：
阅读《Oracle plsql.pdf》
（一）触发器

数据库触发器是一个存储的PL/SQL程序块，它与一个基表联系，当在表上执行特定的数据库维护（插入、删除、更新这三种操作）时，隐含地执行一个PL/SQL程序块。
（二）触发器的作用：
1. 防止非法的数据库操纵、维护数据库安全
2. 对数据库的操作进行审计，存储历史数据
3. 完成数据库初始化处理
4. 控制数据库的数据完整性
5. 进行相关数据的修改
6. 完成数据复制
7. 自动完成数据库统计计算
8. 限制数据库操作的时间、权限等，控制实体的安全性
（三）触发器的组成
· 触发时间：触发器事件的时间次序（before, after)
· 触发事件：什么SQL语句会引起触发器触发(Insert, delete, update)
· 触发子体：触发器触发时要执行的操作(一个完整的PL/SQL程序)

· 触发类型：触发器被执行的次数(语句级、行级）//语句级只执行一次，行级会执行多次。
注意事项
（1）触发器可以声明为在对记录进行操作之前，在之前(检查约束之前和 INSERT，UPDATE 或 DELETE 执行前)或之后(在检查约束之后和完成 INSERT， UPDATE 或 DELETE 操作)触发.。

（2）一个 FOR EACH ROW 执行指定操作的触发器为操作修改的每一行都调用一次。

（3）SELECT 并不更改任何行，因此不能创建 SELECT 触发器.这种场合下规则和视图更适合。

（4）触发器和某一指定的表格有关，当该表格被删除时，任何与该表有关的触发器同样会被删除。

（5）在一个表上的每一个动作只能有一个触发器与之关联。

（6）在一个单独的表上，最多只能创建三个触发器与之关联，一个INSERT触发器，一个DELETE触发器和一个UPDATE触发器。
（四）创建触发器语法
使用CREATE TRIGGER语句创建触发器
CREATE[OR REPLACE] TRIGGER name {BEFORE|AFTER }
 {event [OR ...]} ON table [FOR[EACH]

 {ROW|STATEMENT}]

[WHEN(condition)] plsql block|call procedures_statement
Before型触发器：

编写一个数据库触发器，当任何时候某个部门从dept表中删除时，该触发器将从emp表中删除该部门的所有雇员。（执行多次：行级触发）

CREATE OR REPLACE TRIGGER del_emp_deptno
BEFORE DELETE ON dept

FOR EACH ROW

BEGIN

DELETE FROM emp WHERE deptno=:OLD.deptno;

END;
After型触发器：
编写一个数据库触发器，当有新雇员元组插入EMP表，将显示当前的员工总数。（语句级触发：只执行一次）
Create or replace trigger InsertEmp
after insert on emp
Declare
 v_empcount number(7);
Begin
 select count(*) into v_empcount from emp;
 dbms_output.put_line('目前员工总数已达到：'|| v_empcount|| '名。');
End;
SQL> set serveroutput on
插入EMP任意条记录进行验证
注意：

创建行级触发器：增加选项for each row, 使触发器在每一行上触发。创建行级触发器注意事项：
(1) 在行级触发器中，在列名前增加old表示该列修改前值，增加new表示该列修改后值。
(2) 在PL/SQL中引用时，前边增加冒号。
<举例>

创建一张TRANSHISTORY的表，用于了解在books表上所执行的所有事务。

包括更新、删除操作，和执行这些操作的用户和日期时间。

create table transhistory

(tabname varchar2(30),

transtype varchar2(20),

transuser varchar2(30),

transtime date);
create or replace trigger book_trigger

after delete or update on books

declare

v_transtype varchar2(10);

begin

if deleting then

v_transtype:='delete';

elsif updating then

v_transtype:='update';

end if;

insert into transhistory

values('books',v_transtype,user,sysdate);

end;

/
测试：

Update books

Set price=333

Where isbn=201501139;

Commit;

Select * from transhistory;
<举例>创建触发器，它将映射emp表中每个部门的总人数和总工资
--创建映射表 （存放最新的部门号，部门总人数，总工资）
CREATE TABLE dept_sal AS
SELECT deptno,COUNT(empno) AS total_emp, SUM(sal) AS total_sal FROM emp GROUP BY deptno;

创建触发器
CREATE OR REPLACE TRIGGER emp_info
AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE CURSOR cur_emp IS
SELECT deptno,COUNT(empno) AS total_emp,SUM(sal) AS total_sal FROM emp GROUP BY deptno;
BEGIN DELETE dept_sal;
//--触发时首先删除映射表内旧信息
FOR v_emp IN cur_emp LOOP
DBMS_OUTPUT.PUT_LINE(v_emp.deptno || v_emp.total_emp || v_emp.total_sal);
//--插入数据
INSERT INTO dept_sal VALUES(v_emp.deptno,v_emp.total_emp,v_emp.total_sal);
END LOOP;
END;
/
验证触发器—执行对emp表DML操作
INSERT INTO emp(empno,deptno,sal) VALUES('123','10',10000);
SELECT * FROM dept_sal;
DELETE EMP WHERE empno=123;
SELECT * FROM dept_sal;

练习：

1. 当试图从student表中删除一个学生时，SC表中此学生的选课记录也删除（用触发器控制）；
2. 创建触发器，比较emp表中更新的工资
CREATE OR REPLACE TRIGGER sal_emp
BEFORE UPDATE ON emp
FOR EACH ROW
BEGIN
IF :OLD.sal > :NEW.sal THEN DBMS_OUTPUT.PUT_LINE('工资减少');
ELSIF :OLD.sal < :NEW.sal THEN DBMS_OUTPUT.PUT_LINE('工资增加');
ELSE DBMS_OUTPUT.PUT_LINE('工资未作任何变动');
END IF;
DBMS_OUTPUT.PUT_LINE('更新前工资 ：' || :OLD.sal);
DBMS_OUTPUT.PUT_LINE('更新后工资 ：' || :NEW.sal);

END;
/ --执行UPDATE查看效果
UPDATE emp SET sal = 3000 WHERE empno = '7788';
//复制scott账号下的emp表，并插入数据，首先在本账户下创建emp表

create table emp

(empno number(4),

ename varchar2(10),

job varchar2(9),

mgr number(4),

hiredate date,

sal number(7,2),

comm number(7,2),

deptno number(2),

constraint emp_pk primary key(empno));

//批量插入

insert into emp

select * from scott.emp;

//复制scott账号下的dept表，并插入数据

Create table dept

(deptno number(2),

dname varchar2(14),

loc varchar2(13),

constraint dept_pk primary key(deptno));

//批量插入

insert into dept

select * from scott.dept;

