
第三章 关系数据库标准语⾔SQL
3.1 SQL概述

结构化查询语⾔（Structured Query Language，SQL），是关系数据库的标准语⾔，也是⼀个通⽤的、功能
极强的关系数据库语⾔

⽬前没有⼀个数据库系统能够⽀持 SQL 标准的所有概念和特性

许多软件⼚商对 SQL 基本命令集还进⾏了不同程度的扩充和修改，⼜可以⽀持标准以外的⼀些功能特性

SQL 的特点

综合统⼀
⾼度⾮过程化
⾯向集合的操作⽅式
以同⼀种语法结构提供多种使⽤⽅式
语⾔简洁，易学易⽤

⽀持 SQL 的关系数据库管理系统同样⽀持关系数据库三级模式结构，其中外模式包含若⼲视图和部分基本
表，模式包括若⼲基本表，内模式包含若⼲存储⽂件

基本表

本身独⽴存在的表
SQL 中⼀个关系就对应⼀个基本表
⼀个（或多个）基本表对应⼀个存储⽂件
⼀个表可以带若⼲索引

存储⽂件

逻辑结构组成了关系数据库的内模式
物理结构对⽤户是隐蔽的

视图

从⼀个或⼏个基本表导出的表
数据库中只存放视图的定义⽽不存放视图对应的数据
视图是⼀个虚表
⽤户可以在视图上再定义视图

3.2 数据定义
层次化的数据库对象命名机制

⼀个关系数据库管理系统的实例中可以建⽴多个数据库
⼀个数据库中可以建⽴多个模式
⼀个模式下通常包括多个表、视图和索引等数据库对象

SQL 的数据定义功能

操作对象 创建 删除 修改

模式 CREATE SCHEMA DROP SCHEMA

表 CREATE TABLE DROP TABLE ALTER TABLE

视图 CREATE VIEW DROP VIEW

索引 CREATE INDEX DROP INDEX ALTER INDEX

3.2.1 模式的定义与删除

1. 定义模式

定义模式实际上定义了⼀个命名空间。在这个空间中可以定义该模式包含的数据库对象，例如基本表、视图、
索引等
SQL 中模式定义语句为

在 CREATE SCHEMA中可以接受 CREATE TABLE， CREATE VIEW 和 GRANT ⼦句，即

2. 删除模式

SQL 中删除模式的语句为

其中 CASCADE 和 RESTRICT 两者必选其⼀

选择了 CASCADE（级联），表示在删除模式的同时把该模式中所有的数据库对象全部删除
选择了 RESTRICT （限制），表示如果该模式中定义了下属的数据库对象（如表、视图等），则拒绝该
删除语句的执⾏。仅当该模式中没有任何下属的对象时才能执⾏ DROP SCHEMA 语句

3.2.2 基本表的定义、删除与修改

1. 定义基本表

SQL 中定义基本表的格式为

CREATE SCHEMA <模式名> AUTHORIZATION <⽤户名>;1

CREATE SCHEMA <模式名> AUTHORIZATION <⽤户名> [<表定义⼦句> | <视图定义⼦句> | <授权定义⼦句

>]

1

DROP SCHEMA <模式名> <CASCADE|RESTRICT>;1

CREATE TABLE <表名>

 (<列名> <数据类型> [<列级完整性约束条件>]

 [,<列名> <数据类型>[<列级完整性约束条件>]]
 …
 [,<表级完整性约束条件>]);

1

2

3

4

5

<表名>：所要定义的基本表的名字
<列名>：组成该表的各个属性（列）
<列级完整性约束条件>：涉及相应属性列的完整性约束条件
<表级完整性约束条件>：涉及⼀个或多个属性列的完整性约束条件
如果完整性约束条件涉及到该表的多个属性列，则必须定义在表级上，否则既可以定义在列级也可以定义在表
级

2. 数据类型

SQL 中域的概念⽤数据类型来实现
定义表的属性时需要指明其数据类型及⻓度
⼀个属性选⽤哪种数据类型⼀般从取值范围和要做哪些运算两⽅⾯来考虑

3. 修改基本表

SQL 中修改基本表的格式为

<表名>是要修改的基本表

ADD ⼦句⽤于增加新列、新的列级完整性约束条件和新的表级完整性约束条件

DROP COLUMN ⼦句⽤于删除表中的列

如果指定了 CASCADE 短语，则⾃动删除引⽤了该列的其他对象
如果指定了 RESTRICT 短语，则如果该列被其他对象引⽤，关系数据库管理系统将拒绝删除该列

DROP CONSTRAINT ⼦句⽤于删除指定的完整性约束条件

ALTER COLUMN ⼦句⽤于修改原有的列定义，包括修改列名和数据类型

4. 删除基本表

SQL 删除基本表的格式为

若选择 RESTRICT，则删除表是有限制的：欲删除的基本表不能被其他表的约束所引⽤，如果存在依赖该表
的对象，则此表不能被删除
若选择 CASCADE，删除该表没有限制：在删除基本表的同时，相关的依赖对象⼀起删除

ALTER TABLE <表名>

[ADD[COLUMN] <新列名> <数据类型> [完整性约束]]

[ADD <表级完整性约束>]

[DROP [COLUMN] <列名> [CASCADE | RESTRICT]]

[DROP CONSTRAINT <完整性约束名> [RESTRICT | CASCADE]]

[ALTER COLUMN <列名> <数据类型>];

1

2

3

4

5

6

DROP TABLE <表名> [RESTRICT| CASCADE];1

3.2.3 索引的建⽴和删除

建⽴索引的⽬的：加快查询速度

由数据库管理员或表的拥有者建⽴
由关系数据库管理系统⾃动完成维护
关系数据库管理系统⾃动使⽤合适的索引作为存取路径，⽤户不必也不能显式地选择索引

关系数据库管理系统中常⻅索引：

顺序⽂件上的索引
B+树索引
散列索引
位图索引

1. 建⽴索引

建⽴索引的语句格式为

<表名>：要建索引的基本表的名字
索引：可以建⽴在该表的⼀列或多列上，各列名之间⽤逗号分隔
<次序>：指定索引值的排列次序，升序为 ASC，降序为 DESC，缺省值为 ASC
UNIQUE：此索引的每⼀个索引值只对应唯⼀的数据记录

CLUSTER：表示要建⽴的索引是聚簇索引

2. 修改索引

对于以建⽴的索引，如果需要对其重新命名，语句格式为

3. 删除索引

删除索引的语句格式为

3.2.4 数据字典

数据字典是关系数据库管理系统内部的⼀组系统表，它记录了数据库中所有定义信息：

关系模式定义
视图定义
索引定义
完整性约束定义
各类⽤户对数据库的操作权限
统计信息等

CREATE [UNIQUE] [CLUSTER] INDEX <索引名>

ON <表名> (<列名> [<次序>] [,<列名> [<次序>]]…);

1

2

ALTER INDEX <旧索引名> RENAME TO <新索引名>1

DROP INDEX <索引名>;1

关系数据库管理系统在执⾏ SQL 的数据定义语句时，实际上就是在更新数据字典表中的相应信息

3.3 数据查询
SQL 提供了 SELETE 语句进⾏数据查询，该语句具有灵活的使⽤⽅式和丰富的功能，其⼀般格式为

SELECT ⼦句：指定要显示的属性列
FROM ⼦句：指定查询对象（基本表或视图）
WHERE ⼦句：指定查询条件
GROUP BY ⼦句：对查询结果按指定列的值分组，该属性列值相等的元组为⼀个组。通常会在每组中作⽤聚
集函数。
HAVING 短语：只有满⾜指定条件的组才予以输出
ORDER BY ⼦句：对查询结果表按指定列值的升序或降序排序

以下例⼦均来源于下图的学⽣-课程数据库

3.3.1 单表查询

SELECT [ALL|DISTINCT] <⽬标列表达式> [,<⽬标列表达式>] …

FROM <表名或视图名> [,<表名或视图名>…] | (SELECT语句) [AS] <别名>

[WHERE <条件表达式>]

[GROUP BY <列名1> [HAVING <条件表达式>]]

[ORDER BY <列名2> [ASC | DESC]];

1

2

3

4

5

NAME BIRTH BIRTHDAY DEPARTMENT

李勇 Year of Birth: 1994 cs

刘晨 Year of Birth: 1995 cs

王敏 Year of Birth: 1996 ma

张⽴ Year of Birth: 1995 is

1. 选择表中的若⼲列

（1）查询指定列

例：查询全体学⽣的学号与姓名

（2）查询全部列

例：查询全体学⽣的详细记录

（3）查询经过计算的值

例：查询全体学⽣的姓名、出⽣年份和所在的院系，要求⽤⼩写字⺟表示系名，且使⽤列别名改变查询结果
的列标题

查询结果为：（当前年为2014年）

2. 选择表中的若⼲元组

（1）消除取值重复的⾏

例：查询选修了课程的学⽣学号

（2）查询满⾜条件的元组

例：查询计算机系年龄在20岁以下的学⽣姓名

SELECT Sno, Sname

FROM Student;
1

2

SELECT *
FROM Student;

1

2

SELECT Sname NAME, 'Year of Birth:' BIRTH, 2014-Sage BIRTHDAY, LOWER(Sdept)

DEPARTMENT

FROM Student;

1

2

SELECT DISTINCT Sno

FROM SC;

1

2

3. ORDER BY ⼦句

例：查询全体学⽣情况，查询结果按所在系的系号升序排列，同⼀系中的学⽣按年龄降序排列

4. 聚集函数

例：计算1号课程的学⽣平均成绩

5. GROUP BY ⼦句

例：查询平均成绩⼤于等于90分的学⽣学号和平均成绩

3.3.2 连接查询

1. 等值与⾮等值连接查询

例：查询每个学⽣及其选修课程的情况

2. ⾃身连接

例：查询每⼀⻔课的间接先修课（即先修课的先修课）

SELECT Sname

FROM Student

WHERE Sdept = 'CS' AND Sage < 20;

1

2

3

SELECT *
FROM Student

ORDER BY Sdept, Sage DESC;

1

2

3

SELECT AVG(Grade)

FROM SC
WHERE Cno= ' 1 ';

1

2

3

SELECT Sno, AVG(Grade)

FROM SC

GROUP BY Sno

HAVING AVG(Grade) >= 90;

1

2

3

4

SELECT Student.*, SC.*

FROM Student, SC
WHERE Student.Sno = SC.Sno;

1

2

3

SELECT FIRST.Cno, SECOND.Cpno
FROM Course FIRST, Course SECOND #为Course表取两个别名，⼀个是FIRST，另⼀个是SECOND
WHERE FIRST.Cpno = SECOND.Cno;

1

2

3

3. 外连接

例：查询每个学⽣及其选修课程的情况，保留没有选课的学⽣

4. 多表连接

例：查询每个学⽣的学号、姓名、选修的课程名及成绩

3.3.3 嵌套查询

⼀个 SELECT-FROM-WHERE 语句称为⼀个查询块

将⼀个查询块嵌套在另⼀个查询块的 WHERE ⼦句或 HAVING 短语的条件中的查询称为嵌套查询

⼦查询不能使⽤ ORDER BY ⼦句

不相关⼦查询：⼦查询的查询条件不依赖于⽗查询

由⾥向外，逐层处理。即每个⼦查询在上⼀级查询处理之前求解，⼦查询的结果⽤于建⽴其⽗查询的查
找条件。

相关⼦查询：⼦查询的查询条件依赖于⽗查询

⾸先取外层查询中表的第⼀个元组，根据它与内层查询相关的属性值处理内层查询，若WHERE⼦句返回
值为真，则取此元组放⼊结果表
然后再取外层表的下⼀个元组
重复这⼀过程，直⾄外层表全部检查完为⽌

1. 带有 IN 谓词的⼦查询

例：查询选修了课程名为“信息系统”的学⽣学号和姓名

SELECT Student.Sno,Sname,Ssex,Sage,Sdept,Cno,Grade

FROM Student LEFT OUT JOIN SC ON (Student.Sno=SC.Sno);
1

2

SELECT Student.Sno, Sname, Cname, Grade

FROM Student, SC, Course
WHERE Student.Sno = SC.Sno AND SC.Cno = Course.Cno;

1

2

3

SELECT Sno,Sname
FROM Student
WHERE Sno IN
 (SELECT Sno
 FROM SC
 WHERE Cno IN

 (SELECT Cno
 FROM Course
 WHERE Cname= '信息系统'

)

);

1

2

3

4

5

6

7

8

9

10

11

2. 带有⽐较运算符的⼦查询

例：找出每个学⽣超过他选修课程平均成绩的课程号

3. 带有 ANY（ SOME）或 ALL 谓词的⼦查询

例：查询⾮计算机科学系中⽐计算机科学系任意⼀个学⽣年龄⼩的学⽣姓名和年龄

4. 带有 EXISTS 谓词的⼦查询

例：查询所有选修了1号课程的学⽣姓名

3.3.4 集合查询

集合操作主要包括并操作 UNION、交操作 INTERSECT 和差操作 EXCEPT
参加集合操作的各查询结果的列数必须相同；对应项的数据类型也必须相同

例：查询选修了课程1或者选修了课程2的学⽣

例：查询计算机科学系的学⽣与年龄不⼤于19岁的学⽣的交集（MySQL⽬前不⽀持交操作）

SELECT Sno, Cno

FROM SC x
WHERE Grade >= (SELECT AVG（Grade）

 FROM SC y
 WHERE y.Sno=x.Sno);

1

2

3

4

5

SELECT Sname,Sage

FROM Student
WHERE Sage <ANY (SELECT Sage
 FROM Student
 WHERE Sdept= ' CS ')
AND Sdept <> ‘CS ‘ ;/*注意这是⽗查询块中的条件 */

1

2

3

4

5

6

SELECT Sname

FROM Student
WHERE EXISTS
 (SELECT *
 FROM SC
 WHERE Sno=Student.Sno AND Cno= '1');

1

2

3

4

5

6

SELECT Sno

FROM SC

WHERE Cno = '1'

UNION

SELECT Sno

FROM SC

WHERE Cno = '2';

1

2

3

4

5

6

7

实际上就是查询计算机科学系中年龄不⼤于19岁的学⽣

例：查询计算机科学系的学⽣与年龄不⼤于19岁的学⽣的差集（MySQL⽬前不⽀持差集操作）

实际上是查询计算机科学系中年龄⼤于19岁的学⽣

3.3.5 基于派⽣表的查询

⼦查询不仅可以出现在 WHERE ⼦句中，还可以出现在 FROM ⼦句中，这时⼦查询⽣成的临时派⽣表成为主查
询的查询对象
如果⼦查询中没有聚集函数，派⽣表可以不指定属性列，⼦查询 SELECT ⼦句后⾯的列名为其默认属性
通过 FROM ⼦句⽣成派⽣表时， AS 关键字可以省略，但必须为派⽣关系指定⼀个别名

例：找出每个学⽣超过他⾃⼰选修课程平均成绩的课程号

SELECT *

FROM Student

WHERE Sdept = 'CS'

INTERSECT

SELECT *

FROM Student

WHERE Sage <= 19

1

2

3

4

5

6

7

SELECT *

FROM Student

WHERE Sdept = 'CS' AND Sage <= 19;

1

2

3

SELECT *

FROM Student

WHERE Sdept='CS'

EXCEPT

SELECT *
FROM Student

WHERE Sage <=19;

1

2

3

4

5

6

7

SELECT *

FROM Student

WHERE Sdept = 'CS' AND Sage > 19;

1

2

3

SELECT Sno, Cno

FROM SC, (SELECT Sno, Avg(Grade)

 FROM SC
 GROUP BY Sno)
 AS Avg_sc(avg_sno,avg_grade)
WHERE SC.Sno = Avg_sc.avg_sno and SC.Grade >= Avg_sc.avg_grade

1

2

3

4

5

6

3.3.6 SELECT 语句的⼀般格式

SELECT 语句的⼀般格式为

⽬标列表达式的可选格式

*

<表名>. *

COUNT ([DISTINCT|ALL])

<表名或视图名> [别名] [,<表名或视图名> [别名]] …

聚集函数的⼀般格式

列名

WHERE ⼦句的条件表达式的可选格式

1. 属性列名 θ
属性列名
常量

语句

2. 属性列名
属性列名
常量

语句

属性列名
常量

语句

3. 属性列名 值 值
语句

4. <属性列名> [NOT] LIKE <匹配串>

5. <属性列名> IS [NOT] NULL

6. [NOT] EXISTS (SELECT语句)

7. 条件表达式 条件表达式 条件表达式

3.4 数据更新

SELECT [All|DISTINCT] <⽬标表达式> [别名] [,<⽬标表达式>[别名]]…

FROM <表名或视图名> [别名] [,<表名或视图名> [别名]] … | (<SELECT>) [AS] <别名>

[WHERE <条件表达式>]

[GROUP BY <列名1> [HAVING <条件表达式>]]

[ORDER BY <列名2> [ASC|DESC]]

1

2

3

4

5

3.4.1 插⼊数据

1. 插⼊元组

插⼊元组的 INSERT 语句的格式为

对于 INTO ⼦句

指定要插⼊数据的表名及属性列
属性列的顺序可与表定义中的顺序不⼀致
没有指定属性列时，表示要插⼊的是⼀条完整的元组，且属性列属性与表定义中的顺序⼀致
指定部分属性列时，插⼊的元组在其余属性列上取空值

对于 VALUES ⼦句，提供的值的个数和值的类型必须与 INTO ⼦句匹配

例：将⼀个新学⽣元组插⼊到 Student 表中

2. 插⼊⼦查询结果

插⼊⼦查询结果的 INSERT 语句格式为

例：对每⼀个系，求学⽣的平均年龄，并把结果存⼊数据库

⾸先在数据库中建⽴⼀个新表，其中⼀列存放系名，另⼀列存放相应的学⽣平均年龄

然后对 Student 按系分组求平均年龄，再把系名和平均年龄存⼊新表中

3.4.2 修改数据

修改操作⼜称为更新操作，其语句的⼀般格式为

INSERT

INTO <表名> [(<属性列1>[,<属性列2> …)]

VALUES (<常量1>[,<常量2>] …);

1

2

3

INSERT

INTO Student (Sno,Sname,Ssex,Sdept,Sage)

VALUES ('201215128','陈冬','男','IS',18);

1

2

3

INSERT

INTO <表名> [(<属性列1> [,<属性列2>…)]

⼦查询;

1

2

3

CREATE TABLE Dept_age

 (Sdept CHAR(15)
 Avg_age SMALLINT)

1

2

3

其功能是修改指定表中满⾜ WHERE ⼦句条件的元组
SET ⼦句给出<表达式>的值⽤于取代相应的属性列
如果省略 WHERE ⼦句，表示要修改表中的所有元组

例：将计算机科学系全体学⽣的成绩置零

3.4.3 删除数据

删除语句的⼀般格式为

DELETE 语句的功能是从指定表中删除满⾜ WHERE ⼦句条件的所有元组
如果省略 WHERE 语句则表示删除表中的所有元组，但表的定义仍在字典中
DELETE 语句删除的是表中的数据，⽽不是关于表的定义

例：删除计算机科学系所有学⽣的选课记录

3.5 空值的处理
空值就是“不知道”或“不存在”或“⽆意义”的值

SQL 语⾔允许某些元组的某些属性在⼀定情况下取空值，⼀般有以下⼏种情况：

该属性应该有⼀个值，但⽬前不知道它的具体值
该属性不应该有值
由于某种原因不便于填写

空值是⼀个很特殊的值，含有不确定性。对关系运算带来特殊的问题，需要做特殊的处理

UPDATE <表名>

SET <列名> = <表达式>[,<列名> = <表达式>]…

[WHERE <条件>];

1

2

3

UPDATE SC

SET Grade=0

WHERE Sno IN

 (SELETE Sno

 FROM Student
 WHERE Sdept = 'CS');

1

2

3

4

5

6

DELETE

FROM <表名>

[WHERE <条件>];

1

2

3

DELETE

FROM SC

WHERE Sno IN

 (SELETE Sno

 FROM Student

 WHERE Sdept = 'CS');

1

2

3

4

5

6

1.空值的产⽣

例：向SC表中插⼊⼀个元组，学⽣号是“201215126”，课程号是”1”，成绩为空

2.空值的判断

例：从Student表中找出漏填了数据的学⽣信息

3.空值的约束条件

属性定义（或者域定义）中有 NOT NULL 约束条件的不能取空值，加了 UNIQUE 限制的属性不能取空值，码属性
不能取空值

4.空值的算数运算、⽐较运算和逻辑运算

空值与另⼀个值（包括另⼀个空值）的算术运算的结果为空值
空值与另⼀个值（包括另⼀个空值）的⽐较运算的结果为 UNKNOWN
有 UNKNOWN 后，传统⼆值（ TRUE， FALSE）逻辑就扩展成了三值逻辑

在查询语句中，只有使 WHERE 和 HAVING ⼦句的选择条件为 TRUE 的元组才被选出作为输出结果

例：选出选修1号课程的不及格的学⽣以及缺考的学⽣

3.6 视图
视图是从⼀个或⼏个基本表（或视图）导出的虚表
数据库中只存放视图的定义，⽽不存放视图对应的数据
⼀旦基表中的数据发⽣变化，从视图中查询出的数据也随之改变

INSERT INTO SC(Sno,Cno,Grade)

VALUES('201215126', '1', NULL);
1

2

SELECT *
FROM Student

WHERE Sname IS NULL OR Ssex IS NULL OR Sage IS NULL OR Sdept IS NULL;

1

2

3

SELECT Sno

FROM SC

WHERE Cno = '1' AND (Grade < 60 OR Grade IS NULL);

/*或者*/

SELECT Sno

FROM SC

WHERE Grade < 60 AND Cno = '1'

UNION

SELECT Sno

FROM SC

WHERE Grade IS NULL AND Cno = '1'

1

2

3

4

5

6

7

8

9

10

11

12

13

3.6.1 定义视图

3.6.1.1 建⽴视图

SQL 语⾔⽤ CREATE VIEW 命令建⽴视图，其⼀般格式为

⼦查询可以是任意的 SELECT 语句，是否可以含有 ORDER BY ⼦句和 DISTINCT 短语，则取决于具体系统
的实现

WITH CHECK OPTION 表示对视图进⾏ UPDATE， INSERT 和 DELETE 操作时要保证更新、插⼊或删除的⾏
满⾜视图定义中的谓词条件（即⼦查询中的条件表达式）

组成视图的属性列名或者全部省略或者全部指定

如果省略了视图的各个属性列名，则隐含该视图由⼦查询中 SELECT ⼦句⽬标列中的诸字段组成

下列情况必须指定组成视图的所有列名

某个⽬标列是聚集函数或列表达式
多表连接时选出了⼏个同名列作为视图的字段
需要在视图中为某个列启⽤新的更合适的名字

例：建⽴信息系学⽣的视图，并要求进⾏修改和插⼊操作时仍需保证该视图只有信息系的学⽣

3.6.1.2 删除视图

删除视图的语句格式为

该语句从数据字典中删除指定的视图定义
如果该视图上还导出了其他视图，使⽤ CASCADE 级联删除语句，把该视图和由它导出的所有视图⼀起删除
删除基表时，由该基表导出的所有视图定义都必须显式地使⽤ DROP VIEW 语句删除

CREATE VIEW <视图名> [(<列名> [,<列名>]…)]

AS <⼦查询>

[WITH CHECK OPTION];

1

2

3

CREATE VIEW IS_Student

AS

SELECT Sno, Sname, Sage

FROM Student

WHERE Sdept = 'IS'

WITH CHECK OPTION;

1

2

3

4

5

6

DROP VIEW <视图名>[CASCADE];1

3.6.2 查询视图

关系数据库管理系统执⾏对视图的查询时，⾸先进⾏有效性检查，检查查询中涉及的表、视图等是否存在。如果存
在，则从数据字典中取出视图的定义，把定义中的⼦查询和⽤户的查询结合起来，转换成等价的对基本表的查询，
然后在执⾏修正了的查询。这⼀转换过程称为视图消解。

例：查询选修了1号课程的信息系学⽣

3.6.3 更新视图

由于视图是不实际存储数据的虚表，因此对视图的更新最终要转换成对基本表的更新
像查询视图⼀样，对视图的更新操作也是通过视图消解，转换为对基本表的更新操作
⼀般地，⾏列⼦集视图是可更新的
对其他类型视图的更新不同系统有不同限制。⼀些视图是不可更新的，因为对这些视图的更新不能唯⼀地有意
义地转换成对相应基本表的更新

例：将信息系学⽣视图 IS_Student 中学号“201215122”的学⽣姓名改为”刘⾠”

转换后的更新语句为：

3.6.4 视图的作⽤

视图能够简化⽤户的操作
视图使⽤户能以多种⻆度看待同⼀数据，适应数据库共享的需要
视图对重构数据库提供了⼀定程度的逻辑独⽴性
视图能够对机密数据提供安全保护
适当的利⽤视图可以更清晰的表达查询

SELECT IS_Student.Sno,Sname

FROM IS_Student,SC

WHERE IS_Student.Sno = SC.Sno AND SC.Cno = '1';

1

2

3

UPDATE IS_Student

SET Sname= '刘⾠'

WHERE Sno = '201215122';

1

2

3

UPDATE Student

SET Sname = '刘⾠'

WHERE Sno = '201215122' AND Sdept = 'IS';

1

2

3

	第三章 关系数据库标准语言SQL
	3.1 SQL概述
	3.2 数据定义
	3.2.1 模式的定义与删除
	1. 定义模式
	2. 删除模式

	3.2.2 基本表的定义、删除与修改
	1. 定义基本表
	2. 数据类型
	3. 修改基本表
	4. 删除基本表

	3.2.3 索引的建立和删除
	1. 建立索引
	2. 修改索引
	3. 删除索引

	3.2.4 数据字典

	3.3 数据查询
	3.3.1 单表查询
	1. 选择表中的若干列
	2. 选择表中的若干元组
	3. ORDER BY 子句
	4. 聚集函数
	5. GROUP BY 子句

	3.3.2 连接查询
	1. 等值与非等值连接查询
	2. 自身连接
	3. 外连接
	4. 多表连接

	3.3.3 嵌套查询
	1. 带有 IN 谓词的子查询
	2. 带有比较运算符的子查询
	3. 带有 ANY（SOME）或 ALL 谓词的子查询	
	4. 带有 EXISTS 谓词的子查询

	3.3.4 集合查询
	3.3.5 基于派生表的查询
	3.3.6 SELECT 语句的一般格式

	3.4 数据更新
	3.4.1 插入数据
	1. 插入元组
	2. 插入子查询结果

	3.4.2 修改数据
	3.4.3 删除数据

	3.5 空值的处理
	3.6 视图
	3.6.1 定义视图
	3.6.1.1 建立视图
	3.6.1.2 删除视图

	3.6.2 查询视图
	3.6.3 更新视图
	3.6.4 视图的作用

